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For efficient mechanical system optimization, a new two-point approximation method is
presented. Unlike the conventional two-point approximation methods such as TPEA, TANA,
TANA-l, TANA-2 and TANA-3, this introduces the shifting level into each exponential
intervening variable to avoid the lack of definition of the conventional exponential intervening
variables due to zero- or negative-valued design variables. Then a new quadratic approximation
whose Hessian matrix has only diagonal elements of different values is proposed in terms of
these shifted exponential intervening variables. These diagonal elements are determined in a
closed form that corrects the typical error in the approximate gradient of the TANA series due
to the lack of definition of exponential type intervening variables and their incomplete second
-order terms. Also, a correction coefficient is multiplied to the pre-determined quadratic term
to match the value of approximate function with that of the previous point. Finally, in order to
show the numerical performance of the proposed method, a sequential approximate optimizer
is developed and applied to solve six typical design problems. These optimization results are
compared with those of TANA-3. These comparisons show that the proposed method gives
more efficient and reliable results than TANA-3.
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1. Introduction

In the 1970's, Schmit and his coworkers
introduced suitable approximation concepts
(Schmit and Farshi, 1974; Schmit and Miura,
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1976; Schmit and Fleury, 1980). They combined
the now familiar techniques of intervening vari­
able definition, explicit approximation, reduced
basis and design variable linking as well as con­
straint deletion and regionalization. In the 1980's,
most of approximations were based on function
and gradient information at a single point and
constructed by the first-order Taylor series
expansion at this point, which are the linear,
reciprocal and conservative approximations
(Schmit and Fleury, 1980). This is very popular
because the function and its derivative values are
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always required in the most of optimization
algorithms, so no additional computation is in­
volved in constructing the approximate functions.
Although these approximation works effectively
for stress and displacement functions, the
truncated error of them might be large.

In the 1990's, in order to make full use of the
known information to construct approximate
functions, many multi-point approximations have
been developed (Wang and Grahdhi, 1995, 1996a,
1996b; Fadel et al., 1990; Xu and Grandhi, 1998).
Among them, two-point approximation methods,
first introduced by Fadel et, al, (1990), are widely
used for their simplicity. They considered
intervening variables in terms of exponentials,
which were computed by matching the gradient of
approximate function with the previous design
point's exact value. Based on these exponential
intervening variables, Wang and Grandhi (1995)
developed an improved two-point approximation
using both function and gradient information of
two data points, which were called TPEA­
change, TANA, TANA-l and TANA-2. Recent­
ly, Xu and Grandhi (1998) developed TANA-3
having diagonal and changeable Hessian matrix
in order to avoid the computational burden of
solving n+ I nonlinear equations for each
function in TANA- 2. Owing to its changeable
quadratic terms, however, TANA-3 may make a
point of inflection between two points used for
approximation although the original function is
convex between them. This false approximation
can retard the convergence of sequential approxi­
mation optimization (SAO). Also, TANA-3 may
falsely give non-zero derivative values with re­
spect to some design variables on which the orig­
inal function is not dependant.

This paper presents a new two-point approxi­
mation. Unlike other two-point approximations
such as TPEA (Fadel et al., 1990), TANA,
TANA-l, TANA-2 (Wang and Grandhi, 1995)
and TANA-3 (Xu and Grandhi, 1998), this
introduces the shifting level into each exponential
intervening variable to avoid the lack of defini­
tion of the conventional exponential intervening
variables due to zero- or negative-valued design
variables. Then a new quadratic approximation

whose Hessian matrix has only diagonal elements
of different values is proposed in terms of these
shifted exponential intervening variables. These
diagonal elements are determined in a closed form
that corrects the typical error in the approximate
gradient of the TANA series due to the lack of
definition of exponential type intervening
variables and their incomplete second-order
terms. Also, a correction coefficient is multiplied
to the pre-determined quadratic term to match the
value of approximate function with that of the
previous point.

Section 2 reviews the typical two-point
approximations such as TPEA, TANA, TANA-I,
TANA-2 and TANA-3. Section 3 fully describes
the proposed two-point diagonal quadratic ap­
proximation (TDQA). Section 4 describes the
computational procedure of SAO combined with
the TDQA. Section 5 shows the numerical per­
formance of the SAO combined with TDQA.
Finally, the concluding remarks are presented in
Sec. 6.

2. Review of the Two-Point
Approximations

In this section, we describe the mathematical
details of the previous two-point approximations
such as TPEA, TANA, TANA-I, TANA-2 and
TANA- 3 in order to better explain the proposed
method. The known design points are denoted as
Xl(Xl,l, X2,l, "', Xn,l) and XZ(Xl,Z, Xz, ... , Xn,z)

where the function and gradient information are
available. Here n is the number of design
variables. The function g(x) denotes the approx­
imate function based on two-point approxima­
tion, which is expanded at the current design
point Xz and uses the values of function and/or
derivatives of two design points.

2.1 Two-point exponential approximation
(TPEA)

Fadel et al. (1990) first developed a two-point
exponential approximation. It is a linear Taylor
approximation in terms of the intervening
variables
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The approximate function is given in terms of the
original variables Xi as

n arr(X2) X~2P'
g(X)=g(X2)+:l: 05 ~ (xf'-xtn (3)

i=l aXi Pi

where the exponent Pi for each design variable is
evaluated by matching the derivatives of the ap­
proximate function with those of the exact func­
tion at the previous design point. Pi is obtained in
a closed form solution, that is

In this approximation, the value of Pi is limited
from -I to +1. However, Wang and Grandhi
(1995) removed the limitation of Pi for better
adaptability for different structural problems,
which was called as TPEA-change method.

In the TANA-2 approach, the approximation
is written by expanding the function at X2 and
includes the second-order Taylor series effects, in
which the Hessian matrix has only diagonal
elements of the same value e2.

n a ( ) I-P,
g(X)=g(X2) +:l: g X2 X~

i=l aXi Pi
I n

(xf'-xtn+Te2~(xf'-xtn2 (5)

In order to get n + I unknown constants (Pi and
e2), n+ I equations are required. The n equations
are obtained by matching ag(Xl)!aXi=ag(Xl) /

aXi, i=l, 2, "', n. The (n+l)th equation is
obtained by matching g(Xl)=g(Xl). Then, n+1
unknown constants can be obtained by solving
these n+ I coupled nonlinear equations.

TANA-I and TANA-2 had either incomplete
matching at two design points or the additional
solving of equations that was needed to get some
parameters. Recently Xu and Grandhi (1998)
developed TANA- 3, which was the incomplete
second order Taylor series expansion in terms of
the intervening variables, in which Hessian matrix
was diagonal and changeable. This approxima­
tion method used the intervening variables given
in Eq. (1). The approximation was represented by
expanding the function at X2.

g(X)=g(X2) +~ ag(X2) x},2P
i

i=1 aXi Pi
I n

(xf'-Xt~)+Te3(X) ~(Xfi_xt~)2 (6)

Special provisions needed to be made when the
ratios in the numerator or denominator in Eq. (2)
are negative or the denominator is close to 1. In
the first case Xu and Grandhi (1998) assigned a
specialized value (1 or -I) to Pi. While in the

specifying

e3(x)=H/[~(Xfi_Xtf)2+~(Xfi_Xt~)2J (7)

where Pi and H are constants to be obtained in a
closed form solution to match g(Xl)=g(Xl) and.
V'g(Xl)=V'g(Xl). The value of Pi is equal to Eq.
(2) and His

H =2' [g(Xl) - g(X2)- ±a~(X2) X;.Pi(xti - xt~)] (8)
r-:;1 ~z z

(I)Yi=xfi, i=l, 2, "', n

2.2 Two-point adaptive nonlinear
approximations (TANA)

Wang and Grandhi (1995) proposed TANA
method using adaptive intervening variables as
Yi=xL i=l, 2, "', n, where r represents the
nonlinearity index, which is different at each
iteration but is the same for all variables. The
nonlinearity index was determined by matching
the function value of the previous design point.
Also, In order to utilize more information in
constructing better approximation, Wang and
Grandhi (1995) proposed the following two ap­
proximation methods (TANA-I and TANA-2)
to combine TPEA-change and TANA methods.

In TANA-I approach, the approximation is
expanded at the previous design point Xl instead
of the current point X2 to reproduce the most
recent information exactly, that is

n a ( ) I-P,
g(x)=g(Xt> +:l: g Xl X~l (Xf'-XtO+el (4)

i=1 aXi Pi

where el is a constant, representing the residue of
the first-order Taylor approximation in terms of
the intervening variables Yi. To evaluate Pi and
el, the approximate function value and its
derivatives are matched with those of exact func­
tion at the current point X2. But TANA-I is the
same as TPEA in the result.
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Consequently, the final form of the proposed
approximation can be represented as

(13)

As we described in Sec. 2.2, the value of Pi can be
inappropriately determined when the ratios in the
numerator or denominator in Eq. (11) are nega­
tive- or zero-values. For these cases, the detailed
special provisions are discussed in Sec. 3.2.

In this section, we propose a new quadratic
model in terms of the shifted intervening variables
as

mation, which is called as a Two-point Diagonal
Quadratic Approximation (TDQA). This
introduces the shifting level into the exponential
intervening variables as

Yi=(Xi+Ci)Pi
, i=l, 2, "',n (10)

where c, is the shifting level for the i th design
variable. The unknown exponents Pi are deter­
mined in the same way of TANA-3.

A=I tln[a"t1
) / a~~2)Jlln[(Xi,ltC;)/(Xi,2tCi)] (II)

The proposed approximation expands the func­
tion at X2. The diagonal component of the
Hessian is defined as

in order to correct the error of the approximate
gradient at the previous design point. As the
exponent Pi is determined to match Og(Yl)!OYi=

Og(Yl)!OYi, the appropriate Pi makes Gi=O.

Finally, in order to match g(Xl)=g(Xl), the
correction coefficient TJ is determined as

-( (+~ ag(X2) ( )+ ~G 2g x)=g X2) tl aYi Yi-Yi,2 7Jtl i(Yi-yd

(IS)

Now we examine the problems of TANA-3
mentioned at the end of Sec. 2.

• In comparison with Eq. (9), the approximate
derivatives of TDQA with respect to some design
variables, of which a function is independent, are

3.1 Basic concept
This study presents a new two-point approxi-

3. Two-Point Diagonal Quadratic
Approximation (TDQA)

second case they considered the optimization
iterations near the convergence domain and the
design variables being hardly changed. Thus, they
assigned a specialized value (lor -I) to Pi, too.
On the other side, the magnitude of Pi may be
large and deteriorate the approximation. Thus,
they put a bound value on Pi when the magnitude
of Pi is greater than bound value. It is rounded
down to the bound value. They recommended the
bound value as sign(Pt>· 5.

Although TANA-3 can overcome the com­
putational burden of TANA-2 that needs
additional solving of n +1 equations for each
function, it has the following three problems due
to its changeable quadratic terms.

• TANA- 3 may make a point of inflection
between two points used for approximation
although the original function is convex between
them.

• The approximation accuracy is not guaran­
teed when the ratios in the numerator or
denominator in Eq. (2) are negative, even though
Xu and Grandhi provide the special provisions
for these cases.

• TANA-3 may falsely give non-zero
derivative values with respect to some design
variables on which the original function is not
dependent. In other words, although g(x) do not
depend on Xi, the following approximate
derivative may not be zero-value because e3(X)=i=

o or Oe3(X)! oxi=i=O.

og(x) I Oe3(X) ~(Po po)2+ ( )
OXi 2 OXi ~ Xi'-Xij e3 x

(xf'-X~)'PiXf,-l (9)

These defects can be similarly occurred in TANA
-2 because its correction coefficient C2 can be
considered as a simplified form of e3(X). And
TAN A- 2 cannot represent curvatures of different
signs along the intervening variable coordinates
due to its constant diagonal Hessian term e2.
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3.2.1 Determination of the shifting level c,
If the current design variable Xi is less than a

small positive real value 1;, then Ci= Ixr I + I is
used, where xr denotes the lower bound for the
i th design variable. Otherwise Ci=O. This shifting
level can avoid the singularity of the approximate
derivatives in the neighborhood of Xi=O and the
fundamental difficulties of other two-point
approximations occurred for Xi<O. The value of
I; is recommended as I X 10-3.

,2 4 6
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...... r~- - Exact
...- - _ .. -TANA-3

-10
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·20

Fig.l TANA-3 approximation to a function of x

10

always zero because ag(yd!aYi=O and ag(Y2)/

aYi=O, therefore Gi=O from Eq. (13).
• Next, in order to better understand the dif­

ference of the quadratic correction terms between
TANA-3 and TDQA, consider the following
function

g(X)=(x-S)2-1S with xl=l.2 and x2=1l.0

which is convex between two points, is
approximated. The function may be so simple but
one can gain some insight into the difference
between TANA-3 and TDQA clearly. The func­
tion values and the derivatives are g(xl)=-0.S6,

g(X2)= 2 l.0, dg/dx IXl =-7.6 and dg/ dx Ix.=
12.0 respectively. As(dg/dx)x./(dg/dx)x.<O, P
is forced to be I. Also, we get H = 192.08 in
TANA-3 and G=7]=1 in TDQA. Thus the
approximate function in TDQA is the identical
one,

gTDQA=21 +12(x-II)+(x-ll)2=(x-S)2-1S

But that in TANA-3 becomes

gTAIIA-3=21 +12(x-ll)t96.04(x-IIW[(x-1.2N(x-lliJ

This approximate function gTANA-3 is plotted on
Fig. 1, together with the original function. Figure
I shows that the approximation of TANA-3 is
very poor. This is principally due to the quadratic
term e3(X) in TANA-3.

3.2 Numerical considerations for constructing
TDQA

In this section we describe some guidelines to
determine the four parameters of c.. Pi, G, and 7]

in the TDQA.

3.2.2 Provisions for the exponent Pi

Special provisions need to be made when the
ratios in the numerator or denominator in Eq.
(1 I) are negative or zero. When the numerator is
less than or equal to zero, we assign Pi= l. This
represents that a quadratic approximation is tak­
en in terms of Xi because of the definition of G«
Also, when the denominator goes to 1 such as I
(Xi,l+C;)/(X.-.z+Ci)-11 :::;;e, P7=P7-1 is assigned
with P~= l. The superscript K is the number of
iterations in SAO. The value of e is recommended
as e= 1X 10-2•

The magnitude of Pi may be large and deterio­
rate the approximation. Thus, we put a bound

value Pmax on Pi when the magnitude of Pi is
greater than Pmax. It is rounded up and down to
(-Pmax, Pmax). We assign Pmax=5.

3.2.3 Provision for the diagonal term Gi in
the Hessian

When the denominator goes to zero in Eq. (13),

the value of Gi becomes infinite. We believe that
this deteriorates the approximation of a function.
Thus, Gi=O is assigned when the denominator
IYi,l- Yi,21 is less than or equal to e IYi,21. The
value of e is recommended as e= 1X 10-2.

3.2.4 Provision for the correction coefficient TJ

The correction coefficient 7] can be a large
value when the denominator of Eq. (14) becomes
a small value. However, the larger 7] deteriorates
the approximate gradient Vg(x), even though it
ameliorates the approximate function g(x). Thus,
we check the following condition, Eq. (16), before
determining the correction coefficient 7].
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Fig. 2 Flow chart of SAO process
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I~Gi(Y'1-Yi,2)21 >E'lg(Xl)-g(X2)-~a~~2)(Y'1-Yi,2) I (16)

where the value of e is recommended as e= 1X
10-2. If this condition is satisfied. then the correc­
tion coefficient 7J is used. Otherwise, 7J = I is used.
In other words. the exactly estimated correction
coefficient from Eq. (14) is used only if the pre­
determined quadratic term is greater than I % of
the linear term in the approximate function g(x).

Otherwise. we neglect the function value matching
at the previous design point because the error is
less than I %.

4. Computational Procedure of
Sequential Approximate Optimization

with TDQA

In order to use the TDQA in the sequential
approximate optimization (SAO). the com­
putational procedure is described as:

Step Q Evaluate function and gradient values of
objective !(x) and constraint functions g,.(x), j=
I, "', m, for the initial design xo. Set K=O.

Step 1. If K =0. construct the function
approximations using conservative method and
go to Step 2. Otherwise, construct them using
TDQA and go to Step 3.
Step 2. Solve the following approximate
optimization problems with 40 percent move lim­
it: minimize l(x) subject to &(x)~O. j=l. "', m

and Xf~Xi~xf for i=l, "', n. Let xZ be the
approximate optimum. Go to Step 4.
Step 3. Solve the approximate optimization
problems, with the initial design xZ-l, without
any move limit: minimize l(x) subject to &(x)~

O. j=l . . .., m and Xf~Xi~xf for i=l • .. ., n.
Let xZ be the approximate optimum. Go to Step 4.
Step 4. Evaluate the exact function values at the
approximate optimum xt If the convergence
criteria of I!(xZ)-!(Xk) I s; n l !(Xk) I and &

(xnS f2 for j = 1, ... , m are satisfied, then the
optimization is terminated. Otherwise, go to Step
5.

Step 5. Evaluate the gradient values of objective
and constraints at .tZ and update the design vari­
able Xk+l=xt Return to Step 1 with K= K+ 1.

In Steps 2 and 3, the approximate optimization
problem can be solved using any constrained
optimizers. This study uses the sequential
quadratic programming (Vanderplaats, 1984). A
flow chart of this process is shown in Fig. 2.

s. Numerical Examples

In order to examine the numerical performance
of the TDQA, a sequential approximate optimizer
having option of two approximation methods
such as TDQA and TANA-3, is developed based
on the computational procedures described in
Sec. 4. In these comparisons. TANA- 2 is not
included. because it requires additional solving of
n+ I equations for each function.

The six test problems considered include two
mechanical system designs. four design cases of
plane ten-bar truss (Haug and Arora, 1979). Two
mechanical system design problems are the
welded beam design (Reklatis et aI., 1983) and the
coil spring design (Haug and Arora. 1979). In the
coil spring design problem, the error of both
approximation methods. described in Sec. 2 and
3, is clearly elucidated. In the four design cases of
ten-bar truss, the effect of using the shifted
intervening variable is numerically shown. The
same convergence tolerances are taken as rt = 1X

10-3 and f2= 1X 10-3 for all test problems.

5.1 Welded beam design problem
This design problem has been widely used in

the Reklaitis et al. (1983). The design objective of
this welded beam design (Fig. 3) is to minimize
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Table 1 Comparison of optimization results for the
welded beam design

Table 2 Comparison of optimization results for the
coil spring design

Initial design TDQA TANA-3

Xl 1.0 0.2409 0.2444
X2 7.0 6.3239 6.2317
X3 4.0 8.3285 8.3010
X. 2.0 0.2443 0.2444

f 15.8138 2.3946 2.3860

Bin"" -0.9048 -0.0027 0.000<i
Iterations 10 11

Initial design TDQA TANA- 3

Xl 1.0 0.0529 0.0584
X2 2.0 0.3863 0.5417
X3 3.0 9.7938 5.2745

f 10.0 0.0127 0.0134·

Binax 1.0 0.0000 0.0006

Iterations 11 7

• Prematurely converged.

Fig.3 Welded beam

Fig. 4 Coil spring

5.2 Tension/compression spring design
problem

This problem is to minimize the weight of a

tension/compression spring (shown in Fi g. 4)

while satisfy ing constraints on mimmum
deflection, shear stress , surge frequency, limit on

outside diameter and on design variables. The

design var iables for this problem are the wire

diameter X l , mean coil diameter X2 and number o f

active coi ls Xa. The mathematical formulation is

rep resented as:

minimize f(X )=(xa+2)X2X12

X~Xa
subject to gl ( X) = I 7l875xt ~O

(
4 ,rz -XIX2 I* x ) 12566(x,xf-xt) +5108x~ -I ~O

( ) - 1 I40.45xl ./0g3 X - - 2 .::"
X2Xa

X2+XI
g4(X)=-\.-5--I ~O

One may refer to (Arora, 1989: pp. 451-453) for

detailed formulation on this example. In this

numerical test, the initial design and the lower

and upp er limits on design variables are taken as

xo=(I , 2, 3) T, x L=(0.05, 0.05, If and x U= (5, 5,

15)T. Co nstraints I and 2 are act ive at the

optimum. The optimum is known as f (x· )=O.

01268.

The optimization result s are listed in Table 2,

which shew that TDQA gives better result than

T A NA - 3. Th en, we trace the conv ergence path of

TANA- 3. At the 7 th iterat ion of TANA-3, some

interesting result s are observed. We believe that

these results enable one to clearly und erstand the

difference of both approximati on method s'

Lt,

I p
D _

J_

the overall welding cost while satisfying

constraints on maximum shear stress in weld (gI),

maximum normal stress in beam (g2), bar

buckling load (g3), minimum deflection of bar

end (g.) and geometric restri ction between weld

th ickness and bar thickness (gs) . The design

variables are the weld thickness X l. the weld

length X2 , the bar width Xa and the bar th ickness
X•. The initial design is taken as x o= ( I, 7,4, 2) T.

The con straints 1, 2, 3 and 5 are active at the

op timum. The optimum is known as f(x*)=2.

3811 and x *=(0.2444, 6.2187, 8.2915, 0.2444)T .

The optimization results are listed in Table I,

which shows that both methods such as TDQA

and TANA-3 can successfully con verge to the

similar optimum , even though no artificial move

limit strategy is employed.
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Fig. 7 Ten-bar truss

5.3 Ten-bar truss design problem: ease-J
This problem (Fig. 7) has been used extensively

in the literature (Haug and Arora, 1979). The

Fig. 6 Comparison of the approximate gradient
values along the vector s

For more detailed comparisons, the directional
derivatives are examined. Figure 6 compares the
directional derivative of the two approximate
functions, which are defined as dgl(X)/da=17gl

(x)· s. Figure 6 shows serious approximation
error in TANA-3, even though it gives the exact
value at the current point (a=O). Now, we com­
pare the approximate derivatives with the exact
values at a=0.I7, which lists in Table 3. This
comparison shows that the serious error of
TANA-3 is caused by the value of iJkI(X)/iJXI

whose sign is not matched with that of exact
value. The mathematical reason for this
phenomenon is clearly described in the end of
Sec. 2.2. We believe that this difference of both
approximation methods is caused by the value of
Hand c, (i=I, 2, 3). Consequently, TANA-3
gives bad search directions during the numerical
optimization process.

0.8

-E.:t
-TrQA
-TANA.)

0.4 0.6
a

0.2
·0.2

0.6

~0.4......
tiO 0.2

0.8

.0.4 '"--------------

Fig, 5 Comparison of the approximate function
values along the vector s

--_._--=:::;;;;;;;~

Exact value 23.52 - 1.27 -0.35 2.57
TDQA 19.18 -1.53 -0.54 2.42

TANA-3 -1.75 -1.92 -0.65 1.07

Table 3 Comparison of approximate derivatives at
a=O.17

OH~""""------""'--"'----~

quadratic terms. Now, we examine the accuracies
of gl(X) and 17gl(x) of the ISf inequality con­
straint approximated from TANA-3 and TDQA,
between the 6 t h and 7 t h points such as X6=(O.

1693, 1.0183, 1.5922)T and x7=(O.093I, 1.5673, 1.
8075f because this constraint is only active at the
7 t h ' •Iteration of TANA- 3. The exponents Pi (i = 1,
2, 3) of TANA-3 are bounded as (-5, 5, 5)
because their values evaluated by Eq. (2) are

exceeded them. Also, the value of H is
evaluated as -1.04726 using Eq. (8). Then, TDQA
can obtain the same exponents Pibecause of Ci=
O. In the quadratic terms ofTDQA, c, (i= 1,2,3)
and 1J are obtained as (0, -0.00396, -0.OO7I)T and
0.85968 using Eqs. (13)-(14).

Let the direction vector to be S=X6-X7. Then
the exact and approximate function values are
evaluated at x=x7+a's in the range a=(O, 1).

Figure 5 shows the function values. Although
both the approximate function values are quite
well matched to the exact function value at two
end points (a=O and a= 1), it is noted that
TDQA gives nearly exact values through the in­
terval (0, 1) but TANA-3 has several points of
inflection in the range [0, I]. As you can see, both
methods use the same exponents. Thus this differ­
ence is caused by only their quadratic terms.
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Table 4 Comparison of optimization results for the
ten-bar truss design: ease-l

Initial design TDQA TANA-3

Xl 1.0 7.9998 7.9545
Xz 1.0 0.0004 0.0624
X3 1.0 8.0001 8.0427
X4 1.0 3.9998 3.9523
xs 1.0 0.0001 0.0001
xs 1.0 0.0004 0.0624
X7 1.0 5.6564 5.7204
xs 1.0 5.6565 5.5934
Xg 1.0 5.6565 5.5933
XIO 1.0 0.0003 0.0925

f 419.64 1583.97 1588.15
g",ax 7.19 0.0001 0.0007

Iterations 10 14

Table 5 Comparison of optimization results for the
ten- bar truss design: case-2

Initial design TDQA TANA-3

Xl 1.0 29.5333 29.8105
Xz 1.0 0.0001 0.0001
X3 1.0 22.9959 23.1649
X4 1.0 15.3412 15.4185
xs 1.0 0.0001 0.0001
xs 1.0 0.2392 0.6497
X7 1.0 7.6663 7.6661
xs 1.0 20.4640 20.4560
Xg 1.0 21.7987 21.3552
XIO 1.0 0.0001 0.0001

f 419.64 4993.92 5004.55
gmax 18.70 0.0000 0.0010

Iterations 12 12

loading consists of 100 kips applied in the nega­

tive ydirection at nodes 2 and 4. The allowable

stress for each element is O'a=25 ksi in tension or

compression, the lower and upper limits for each

element are 0.0001 inz and 50 in2
• The mass

density is p=O.1 lb/in", Young's modulus is E=
107 psi. The initial design is taken as 1.0 in2 for

each element.

The optimization results are listed in Table 4.

In this problem, stress constraints for elements I,

3, 4 and 7-9 and the lower limits on elements 2,

5, 6 and 10 are active at the optimum design.

Table 4 shows that TANA-3 is more sensitive to

the lower limits on elements. However, it is noted

Table 6 Comparison of optimization results for the
ten-bar truss design: case-3

Initial design TDQA TANA-3

Xl 1.0 5.9871 5.9874
Xz 1.0 0.0208 0.0290
X3 1.0 10.0128 10.0130
X4 1.0 3.9867 3.9862
xs 1.0 0.0001 0.0001
Xs 1.0 2.0133 2.0144
X7 1.0 8.5034 8.5037
xs 1.0 2.8104 2.8113
Xg 1.0 5.6381 5.6371
XIO 1.0 0.0286 0.0307

f 419.64 1657.26 1657.70
g",ax 7.37 0.0002 0.0007

Iterations 12 14

that TDQA can converge to the lower limits on

elements. This shows the effectiveness of the

shifted intervening variables in TDQA. When we

traced the optimization history, the premature

convergence was caused by the same phenomenon

shown in Fig. 6.

5.4 Ten-bar truss design problem: case-2
The description of this problem is the same as

for the ten-bar truss design problem ease-L, ex­

cept that the displacement for each node is con­

strained in 8a=±2.0 in.

The optimization results are listed in Table 5.

The downward displacement constraint at node 2

and the minimum size constraints for elements 2,

5 and 10 are active at the optimum. Both approx­

imation methods are successfully converged to

nearly the same optimum, although TDQA gives

better results than TANA- 3.

5.5 Ten-bar truss design problem: case-3
The description of this problem is the same as

for ten-bar truss design problem case- I, except

the- loading condition. In this problem, the load­

ing consists of 150 kips applied in the negative y­

direction at nodes 2 and 4, and 50 kips applied in

the positive y-direction at nodes I and 3.

The optimization results are listed in Table 6.

The stress constraints on elements 2, 5, and 10 are

active at the optimum. Both approximation



1266 Min-Soc Kim, Jong-Rip Kim, Jae- Young Jeon and Dong-Hoon Choi

Table 7 Comparison of optimization results for the
ten-bar truss design: case-4

Initial design TDQA TANA-3

Xl 1.0 22.9287 23.0235
Xz 1.0 0.0001 0.9974
X3 1.0 25.3236 25.2012
X. 1.0 14.2363 14.2246
xs 1.0 0.0001 0.0001
Xs 1.0 2.0003 2.0002
X7 1.0 12.7557 12.7519
xs 1.0 12.1823 12.1201
Xg 1.0 20.1744 20.3548
XIO 1.0 0.0001 0.0001

f 419.64 4619.15 4658.67
&nax 19.06 0.0010 0.0002

Iterations 8 8

methods are successfully converged to nearly the
same optimum, while TDQA saves two analyses
than TANA-3.

5.6 Ten-bar truss design problem: case-4
The description of this problem is the same as

for the ten-bar truss design problem case-S, ex­
cept that the displacement for each node is con­
strained in 8a= ± 2.0 in.

The optimization results are listed in Table 7.
The downward displacement constraint at node 2,
stress in element 5, and the lower limit on
elements 2 and 10 are active at the optimum. Both
approximation methods are successfully
converged to nearly the same optimum. However,
it is noted that TDQA gives better results than
TANA-3 because TDQA gives more active
design to the lower limits on elements 2, 5, and 10.
This shows the effectiveness of the shifted
intervening variables in TDQA.

6. Concluding Remarks

This study presented a new Two-point
Diagonal Quadratic Approximation (TDQA) in
terms of the exponential intervening variables.
This introduced the shifting levels into
intervening variables to avoid the numerical dif­
ficulties of conventional two-point approxima­
tions in the neighborhood of Xi=O and the criti-

cal difficulties of them that could not be used for
Xi<O. Also, in this method, a new quadratic form
is introduced in the proposed intervening variable
space in order to overcome the critical difficulty
that other two-point approximation methods did
not approximate a convex function due to lack of
definition of its intervening variables and did not
represent different signed curvatures due to its
incomplete quadratic terms.

A sequential approximate optimizer with op­
tion of two approximation methods such as
TDQA and TANA-3 was developed and applied
to two mechanical system designs and four cases
of plane ten-bar design problems. In these nu­
merical tests, we numerically show the defect of
TANA-3 mathematically shown in Sec. 2 and the
role of shifted intervening variables. Also, we
compared the performance of the proposed
TDQA with those of TANA-3. These
comparisons clearly show the superiority of
TDQA over TANA-3, which verifies that the
TDQA is an effective and efficient two-point
approximation.
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